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Abstract

Several studies provide evidence that heat is positively associated with crim-
inal activity. However, the empirical literature does not provide conclusive
evidence about the e�ect of high temperature on homicides. I examine 156
estimates from 20 studies on the relationship between temperature and homi-
cide rates. In particular, in this meta-analysis I study publication bias using
linear and nonlinear techniques together with Bayesian model averaging to
explain the heterogeneity in the estimates. After correcting estimates from
the publication bias, I �nd no signi�cant e�ect of temperature on homicide
rates. Moreover, monthly data produce larger estimates. Conversely, studies
using data from Asia or the OLS estimation method lead to smaller estimates.



1 Introduction

How do weather factors a�ect interpersonal violence? The answer to this
question is crucial not only for the research that examines e�ects of climate
change on human behavior. A body of literature has examined how weather
a�ects peoples` lives: a meta-study by Frangione et al. (2022) conclude that
higher ambient temperature increases suicide risks, while Bunker et al. (2016)
and Cruz et al. (2020) provide a meta-analysis of the link between tempera-
ture and mortality to conclude that heat causes more deaths.

Existing research mostly supports the conclusion that weather has a
causal e�ect on crime, Horrocks & Menclova (2011). However, scholars such
as Rotton & Cohn (2003) argue that existing studies mainly use data from
Western countries, and that criminal activities such as rape or robbery are
impossible to use as an indicator in an international context. In this paper I
aim to overcome the issue of incomparability of existing studies by undertak-
ing a meta-analysis of temperature e�ects on homicide rates. According to
Mares & Mo�ett (2016) or del Frate (2010), homicides are the most suitable
crime category for international comparison. Following their argumentation,
homicide rates seem to be an appropriate crime statistic for a meta-analysis.

Generally, studies concerning weather e�ects on crime are motivated by
the climate change issue. Following Horrocks & Menclova (2011), there are
multiple psychological mechanisms through which weather impacts violent
crimes. According to a Negative A�ect Escape model by Bell (1992), aggres-
sion rises with heat because of increases in discomfort and peoples` irritation,
but the trend is inverse U-shaped. Rotton & Cohn (2000) propose the Gen-
eral A�ect model in which higher temperature stimulates aggression and thus
violent crimes. The Routine Activity theory by Felson (1987) suggests that
pleasant weather conditions increase the likelihood of a victim occurring. For
example, in the Routine Activity model, better weather increases social in-
teraction among people which increases the likelihood of crime.

Studies concerning temperature e�ects on homicides have been growing
recently, but the results vary. For example, Mares & Mo�ett (2016) and
Baysan et al. (2019) �nd a positive relationship between heat and homicide
rates, but Colmer & Doleac (2022) and McDowall et al. (2012) argue that
this e�ect is zero. Misak (2022) �nds an insigni�cant and negative link be-
tween temperature and murder rates. Stanley (2001) argues that scholars
do not regularly publish insigni�cant results or results with the wrong sign,
and thus these authors` decisions distort the evidence. The fact that nega-
tive estimates are missing may be due to two factors: actual nonexistence of
negative e�ects or publication bias. All of these facts suggest that a compre-
hensive analysis of existing literature is needed.
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In this paper, I conduct a meta analysis of heat e�ects on homicide rates.
Relevant studies (Figure 1) show that the e�ect varies among studies (see
Figure 3) and also due to di�erent study designs (see Table 4).

I collected 156 estimates from 20 studies and 13 variables that describe
the circumstances of the primary studies. The most recent study is from
2022, while the oldest is from 2005. Studies cover the period from 1973 to
2020. The mean e�ect size as reported in the studies is 0.0048, which means
that 1◦C temperature increase causes homicide rate to increase by 0.0048.

To deal with publication bias, I start with a funnel plot as proposed by
Egger et al. (1997). To test for asymmetry, I provide linear tests using ordi-
nary least squares, �xed e�ects model and linear regressions weighted by the
standard error, number of estimates reported in the study and total number
of citations of the study, respectively. In addition, I provide nonlinear tests
for the presence of publication bias.

My �ndings indicate that the overall reported e�ect of temperature on
homicide rates is driven primarily by publication bias. Although the mean
e�ect from the reported studies indicates that 1◦C causes absolute increase
in homicide rates by 0.0048, after correcting for publication bias, the e�ect is
either statistically insigni�cant or negligable. Based on my model-averaging
results, I further demonstrate that studies using monthly homicide rate data
tend to report larger estimates. Conversely, studies from Asia or those using
OLS regressions report smaller estimates.

The remainder of this paper is structured as follows. Section 2 describes
how I collect data from primary studies and provides core dataset statistics.
Section 3 focuses on publication bias in the literature. Section 4 investigates
the heterogeneity using Bayesian model averaging. Section 5 concludes the
paper.
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2 Data

2.1 Estimates collection

Following general guidelines for undertaking a meta-analysis such as Field &
Gillett (2010) or Havránek et al. (2020) I did the following search for articles.
Firstly, I searched "homicides+OR+murders+OR+crime+AND+temperature+OR+weather"
in Google Scholar. I then went through the �rst 610 studies manually. After
that I did a snowball method from the reference lists of relevant articles.
This procedure was repeated again on articles published from 2020 onwards
to capture newly published articles. Subsequently, I excluded duplicated re-
sults. I decided to exclude the study by Wetherley (2014) because it focuses
on temperature e�ects on homicide rates during extreme weather conditions
(typhoons in Philippines), which is not comparable with other studies. I
carried out the whole procedure in December 2022 which is displayed in Fig-
ure 1. Table 1 provides a list of all studies.

11 studies (55%) analyze short term variation between temperature and
homicides using daily data. The remaining 7 studies (35%) and 2 studies
(10%) focus on the long-term relationship between heat and murder rates
on monthly and annual crime-weather data, respectively. 18 studies (90%)
focus on within-country regional variation; only 2 studies (10%) examine
cross-country variation among a number of countries. All these di�erences
among studies are later discussed in Section 3.

There are several ways to measure temperature e�ect on homicides. The
majority of articles report a standard level-level regression1 coe�cient from
the following equation:

HRi = β0 + β1 · temp+ βi ·Xi ,

where HR stands for homicide rate per 100,000 people, temp is a tempera-
ture variable and Xi is a vector of the set of variables controlling for possible
heterogeneity.

Michel et al. (2016), Trujillo & Howley (2021) and Koppel et al. (2022)
quantify the e�ect using and Incidence rate ratio that has the following form:

IRR = 1+
ĤRchange

HRbase
, where ĤRchange is the observed change in homicide

1I did not collect log-level, level-log or log-log regressions because I am unable to
recalculate these coe�cients into level-level form.
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Figure 1: PRISMA �ow diagram.

rate caused by 1◦C temperature increase and HRbase is the baseline homicide
rate in the study.

I decided to use regression coe�cient to quantify the e�ect of temperature
on homicides. From the interpretation of the regression coe�cient above, I
obtain that β1 = ĤRchange. Fortunately, studies also provided information on

4



the baseline homicide rate HRbase, which enables me to calculate comparable
β from IRR.

I recalculated the temperature e�ect to the degree of Celsius. The formula
for conversion between Fahrenheit and Celsius degrees has the following form:
Celsius = Fahrenheit−32

1.8
. Because adding constant (in our case 32) does not

a�ect β , I can convert e�ects in Fahrenheit to Celsius by dividing them by
1.8.

At the end of the data collection procedure, I have 156 estimates from 20
studies.

2.2 Dataset statistics

The mean e�ect among all studies, as described in Table 4 and Figure 2, is
0.0048 with variance 0.003. In other words, based on simple averaging of
collected estimates, a one-degree Celsius temperature increase is associated
with a 0.0048 increase in the total number of homicides per 100,000 people.

Figure 3 shows the distribution of e�ects per each study. The plot sug-
gests that the majority of estimates is positively distributed around zero2.
The largest estimates are reported in the study by Mares & Mo�ett (2016),
while the lowest e�ects are reported by Misak (2022). Table 1 provides an
overview of the collected studies and their characteristics. I draw several con-
clusions. Firstly, the lengths of the examined datasets di�er among studies.
Authors such as Zambrano et al. (2022) or Gamble & Hess (2012) analyze
homicide rates data from only one year, while McDowall & Curtis (2015)
examine data from 1960 to 2004. Secondly, the majority of studies use aver-
age temperatures, only a minority use maximum temperatures. Finally, the
highest number of estimates used in this meta analysis (86) is from the study
by Colmer & Doleac (2022).

2Based on tests in Table 6 and Table 7 there is no need for winsorization of the data.
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Figure 2: Kernel densities of average temperature estimates and correspond-
ing standard errors
Note: The �gure depicts kernel densities for average temperature and number
of homicides per 100,000 inhabitants relationship. Estimates on the left,
standard errors on the right.

6



A
rt
ic
le

C
ou
n
tr
y

P
er
io
d

F
re
q
u
en
cy

T
em

p
er
at
u
re

E
st
im
at
es

M
ea
n
e�
ec
t

M
ea
n
S
D

B
ay
sa
n
et

al
.
(2
01
9)

M
ex
ic
o

19
90

-
20
10

m
on
th
ly

A
16

0.
01
74

0.
00
6

B
la
ke
sl
ee

et
al
.
(2
01
8)

In
d
ia

20
11

-
20
16

d
ai
ly

M
4

0.
00
2

0.
04
4

C
ol
m
er

&
D
ol
ea
c
(2
02
2)

U
S
A

19
91

-
20
16

d
ai
ly

A
86

0.
00
04

0.
00
02

C
ec
ca
to

(2
00
5)

B
ra
zi
l

20
01

-
20
02

d
ai
ly

A
2

0.
00
08

0.
00
02

G
am

b
le
&
H
es
s
(2
01
2)

U
S
A

19
93

-
19
93

d
ai
ly

A
2

0.
01
29

0.
01

G
ar
g
et

al
.
(2
02
0)

M
ex
ic
o

19
98

-
20
12

d
ai
ly

A
1

0.
01
29

0.
00
38

H
ei
lm
an
n
et

al
.
(2
02
1)

U
S
A

20
10

-
20
17

d
ai
ly

M
1

0.
00
72

0.
00
6

K
op
p
el
et

al
.
(2
02
2)

U
S
A

20
18

-
20
20

d
ai
ly

A
1

0.
00
0

0.
00
0

M
ar
es

&
M
o�
et
t
(2
01
6)

W
or
ld

19
95

-
20
12

ye
ar
ly

A
7

0.
04
64

0.
03

M
cD

ow
al
l
et

al
.
(2
01
2)

U
S
A

19
77

-
20
00

m
on
th
ly

A
1

0.
00
05

0.
00
03

M
cD

ow
al
l
&
C
u
rt
is
(2
01
5)

U
S
A

19
60

-
20
04

m
on
th
ly

A
1

0.
00
07

0.
00
02

M
ic
h
el
et

al
.
(2
01
6)

U
S
A

20
18

-
20
13

m
on
th
ly

M
1

0.
00

0.
00

M
is
ak

(2
02
2)

C
ze
ch
ia

20
05

-
20
15

d
ai
ly

A
,
M

23
-0
.0
00
5

0.
00
1

S
ch
u
tt
e
et

al
.
(2
02
1)

S
ou
th

A
fr
ic
a

20
01
7-
20
14

d
ai
ly

A
1

0.
02

0.
00
86

S
h
en

et
al
.
(2
02
0)

C
h
in
a

20
05

-
20
16

d
ai
ly

A
1

0.
00
13

0.
00
12

S
im
is
te
r
&
V
an

d
e
V
li
er
t
(2
00
5)

W
or
ld

19
77

-
20
01

m
on
th
ly

A
2

0.
00
69

0.
00
85

T
ak
ah
as
h
i
(2
01
7)

J
ap
an

20
09

-
20
15

m
on
th
ly

A
1

0.
00
1

0.
00

T
ru
ji
ll
o
&
H
ow

le
y
(2
02
1)

C
ol
om

b
ia

20
10

-
20
16

d
ai
ly

M
3

0.
00

0.
00

W
u
et

al
.
(2
02
0)

U
S
A

19
73

-
20
09

m
on
th
ly

M
1

0.
01
5

0.
01
07

Z
am

b
ra
n
o
et

al
.
(2
02
2)

U
S
A

20
19

ye
ar
ly

A
1

0.
01
67

0.
07
79

T
ab
le
1:

A
rt
ic
le
s
in
cl
u
d
ed

in
th
e
m
et
a-
an
al
y
si
s.

A
,
M

st
an
d
s
fo
r
av
er
ag
e,
m
ax
im
u
m

te
m
p
er
at
u
re
,
re
sp
ec
ti
ve
ly
.

*
A
ve
ra
ge

h
ig
h
te
m
p
er
at
u
re

fo
r
ev
er
y
ye
ar
.

7



Figure 3: Variation in the estimates across and within studies.
Note: Red line denotes the mean estimate from studies, blue line stands for
zero. All 20 studies included.
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3 Publication Bias

A standard method for checking the presence of publication bias is a funnel
plot. In the case of no publication bias, estimates with higher precision will
be plotted close to the average, while the less precise estimates are spread
on both sides of the distribution. Any deviation from this shape indicates
the presence of a publication bias. The funnel plot in Figure 4 indicates that
there is a publication bias among estimates, because its shape seems to be
skewed to the right. Nevertheless, the funnel plot is only a simple visual test
that we need to further check by linear and nonlinear methods in Table 2
and Table 3.

Figure 4: Funnel plots.

Stanley (2005) proposed a formal test for asymmetry in the funnel plot
(FAT). The test is based on the following linear regression model:
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effectij = β0 + β1 · SE(effect)ij + εij

Where effectij stands for i-th estimate of temperature e�ect on homicide
rate with the standard error SE(effect)ij reported in the j-th study. In the
case of no publication bias, e�ects should be independent on their standard
errors. In other words, in the absence of publication selection, the true e�ect
should be equal to β0, which we call the mean beyond bias. Correspondingly,
β1 stands for the publication bias among collected e�ects. Table 2 presents
the FAT results using various estimation techniques. The �rst column pro-
vides results of the simple OLS regression. FE accounts only for within-study
variation. The precision column applies weight proportional to the standard
error of each estimate which assigns more weight to more precise studies
and therefor directly deals with heteroskedasticity, Stanley & Doucouliagos
(2012). The Study column weighs the e�ect by the number of estimates
reported in every study. Citations stands for a regression weighted by the
total number of citations of each study. Based on four of �ve speci�cations,
I argue that there is a signi�cant publication bias among e�ects. Moreover,
none of the linear estimation techniques provides signi�cant results about
the mean beyond bias, which indicates that there is no e�ect of temperature
on homicide rates at all and the fact that the mean estimate is positive is
due solely to the publication bias.

Table 2: Linear tests for publication bias

OLS FE Precision Study Citations
SE 1.1303* 2.0025*** 1.4808*** 0.4782 1.5943***

(Publication bias) 0.5684 0.6591 0.325 0.8345 0.0793
Constant 0.00103 0.0000 0.0000 0.0046 0.0007

(Mean beyond bias) 0.00162 0.0000 0.0000 0.0035 0.0018
Studies 20 20 20 20 20

Observations 156 156 156 156 156

Note: Table provides results for the linear techniques estimating publication bias.
Study-clustered standard errors are provided below each coe�cient. First row
represents the FAT test of publication bias. Second row tests for the mean estimate
beyond bias. * p < 0.10, ** p < 0.05,*** p < 0.01.

However, linear tests for publication bias yield unbiased estimates of the
Mean beyond bias if and only if the publication selection is proportional to
the standard error, Bajzik (2021). However, in practice, I often do not know
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Table 3: Non-linear tests for publication bias

Stanley et al. (2010) Furukawa (2019) Vevea & Hedges (1995)
Mean beyond bias 0.0205*** 0.00005 0.0025***
Standard error (0.0034) (0.00009) (0.0009)

Note: This table provides results of our 3 main non-linear techniques for publication
bias determination. These tests only provide an estimation of the mean beyond
bias. Clustered standard errors are presented in the parenthesis.

the exact form of the publication selection procedure. Therefore, in addition
to linear tests for publication bias in Table 2, I employ three non-linear tests
as displayed in Table 3. First, the test by Stanley et al. (2010) that relies
on a statistical trick, namely discarding 90% of the published �ndings and
averaging the most precise 10% of the collected estimates. Second, the test
by Furukawa (2019), also known as stem-based method, uses only the most
precise estimates and minimizes the mean squared error of the estimates.
This non-parametric method tests publication bias under various assump-
tions. Third, the Vevea & Hedges (1995) test �rstly estimates a �xed-e�ects
model where e�ect sizes are assumed to have a normal distribution. Then,
estimate an adjusted model that includes both the original �xed e�ects model
and a series of weights for speci�c p-value interval, which produces a mean
with corresponding standard error adjusted for publication bias. Two of the
three tests, namely Stanley et al. (2010) and Vevea & Hedges (1995), provide
statistically signi�cant results.

To conclude, in the results of linear and nonlinear tests for detecting
publication bias, as displayed in Table 2 and Table 3, only two of eight tests
provide signi�cant evidence that temperature has a positive e�ect on homi-
cide rates. The average of all true e�ects from these eight tests is 0.0037,
which is 77 % of the 0.0048, which is the average of all estimates. Therefore,
I argue that there is either no e�ect of heat on homicide rates or the e�ect
is smaller than commonly thought.
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4 Heterogeneity explained

Existing literature mentions two reasons for systematic di�erences in the es-
timates of temperature e�ects on crime rates. Firstly, according to Ranson
(2014): "annually-averaged data for large geographic units may face chal-
lenges with empirical identi�cation of how weather a�ects crime rates. Fur-
thermore, �ndings from these studies may be biased by the substantial year-
to-year reporting inconsistencies".

Secondly, Mares & Mo�ett (2016) �nd regional di�erences in tempera-
ture e�ects on homicide rates. According to their study, there is no such
signi�cant e�ect in former Soviet countries. On the other hand, Mares &
Mo�ett (2016) argue that temperature causes an overall increase in mur-
der rates in North America and Africa. The majority of existing causal heat
e�ects on homicide rates is from the USA (Rotton & Cohn (2003) or Table 1).

Table 4 lists all the codi�ed variables with corresponding mean, variance,
and mean and variance weighted by the inverse of the number of observations
per study. For the purpose of the meta-analysis I divide the variables into
groups describing data characteristics, structural variation, spatial charac-
teristics, estimation techniques and publication characteristics.

Data characteristics. Studies based on annual and monthly data re-
port substantially higher estimates. This conclusion is supported by Ranson
(2014) argumentation. Moreover, e�ects from daily data are the lowest. Fi-
nally, mean temperature estimates are higher than maximum temperature
estimates.

Structural variation. Scholars such as Rotton & Cohn (2000) suggest
that the trend between temperature and crime is curve linear. Based on �nd-
ings from Table 4, I argue that the Temperatue2 variable makes estimates
of the heat e�ect on homicides negligible or even negative. Similarly, studies
that use precipitation as another weather variable seem to produce smaller
estimates.

Spatial characteristics. Following Mares & Mo�ett (2016) and Rotton
& Cohn (2003), I divide articles into three geographical clusters based on
which countries the data was taken from - USA, Asia and other countries.
It seems that studies from Asia and the USA produce substantially smaller
estimates than studies from the rest of the world.

Estimation techniques. Table 4 suggests that Poisson regression and
OLS estimation techniques produce substantially smaller estimates than other
methods.

Publication characteristics. Finally, studies published in peer-reviewed
journals suggest that the link between temperature and homicide rates is

12



Unweighted Weighted
No. of studies No. of est. Mean Variance Mean Variance

Data characteristics
Annual data 2 8 0.0427 0.0028 1.1458 0.1416
Monthly data 7 23 0.0134 0.0001 0.6419 0.0312
Daily data 11 125 0.0008 0.0 0.2732 0.0074
Mean temperature 15 139 0.0052 0.0003 0.6707 0.0253
Maximum temperature 7 17 0.0014 0.0 -0.0165 0.0005
Structural variation
Rain variable 14 109 0.0017 0.0 0.4671 0.0152
Temperature2 variable 3 11 0.0005 0.0 -0.1239 0.0007
Spatial characteristics
USA 9 95 0.0011 0.0 0.3564 0.0091
Asia 3 6 0.0017 0.0 0.0114 0.0003
Other countries 8 55 0.0117 0.0006 0.8186 0.0455
Estimation methods
OLS regression 8 99 0.0012 0.0 0.4083 0.0087
Poisson regression 3 25 0.0001 0.0 -0.0751 0.001
Fixed e�ects 5 20 0.0144 0.0001 0.8915 0.003
Other method 4 12 0.0285 0.0022 0.5729 0.11
Publication characteristics
Reviewed journal 16 45 0.0159 0.0007 0.4312 0.0491
Sample size > 100,000 6 128 0.0021 0.0 1.2001 0.0124
Sample size < 100,000 7 16 0.0253 0.0017 0.5144 0.112
All estimates 20 156 0.0048 0.0002 0.4895 0.0231

Table 4

Summary statistics for di�erent subsets of collected literature. The left-hand
part displays unweighted mean e�ects with corresponding variances. The right-
hand part displays means weighted by the inverse number of estimates reported
in each article. Detailed explanation of variables is in Table 5.

greater than that reported in non-reviewed articles (such as working papers
etc.). Moreover, estimates from a large sample size (more than 100,000 ob-
servations) report lower results of the heat-homicides relationship.
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4.1 Bayesian model averaging

The goal of this subsection is to analyze which variables, as listed in Table 4,
explain the heterogeneity in the estimates reported in the literature. One
possible way might be to put all variables into one regression. However, I do
not know which of these variables really belong to the true underlying model,
because I believe that all of them might be important for explaining why the
collected estimates vary. Including all variables from Table 4 will decrease
the overall precision of the results. Steel (2020) recommends addressing this
model uncertainty problem using Bayesian model averaging (BMA).3 BMA
is an application of Bayesian techniques to solve the problem of model selec-
tion Fragoso et al. (2018). Let K be a set of examining models M1, ...,MK .
Then, using Bayes` rule, the posterior inclusive probability (PIP) of model j
is:

p(Mj|X) = p(X|Mj)·p(Mj)

p(X)
= p(X|Mj)·p(Mj)∑K

k=1
p(X|Mk)·p(Mk)

I included 11 variables that, according to the discussion in Section 4
above, might have an impact on the estimates reported in the literature.
BMA computed 211 possible combinations of regressions that have the fol-
lowing form:

HRji = γ0 + γ1 · SE(HRji) + γ2 ·Xji + εji

where HRji stands for j-th homicide rate estimate as reported in i-th
study, Xji stands for explanatory variables and SE stands for standard er-
ror. Coe�cient γ0 stands for the mean e�ect corrected for publication bias,
while γ1 denotes the direction of the publication bias, similarly to the linear
test for the funnel plot asymmetry discussion in Section 3. The likelihood of
each model is represented by the posterior probability and estimated BMA
coe�cients for each variable are represented by posterior means. Results of
the BMA model are provided in Figure 5 and Table 8.

On the vertical axes explanatory variables as described in Table 8 are
ranked according to their posterior inclusion probabilities. The horizontal
axis shows cumulative posterior model probability. Blue color means the
estimated parameter of the corresponding explanatory variable is positive,
otherwise the color is red.

3BMA is widely used in meta-analysis in economics, e.g. Havranek et al. (2015),
Havránek et al. (2020) or Bajzik et al. (2020).
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Figure 5: Model inclusion in Bayesian model averaging

The �gure displays the results of the benchmark BMAmodel as reported in Table 8.

Je�reys (1998) considers posterior inclusive probabilities (PIP) in inter-
val 0.99-1 as decisive, 0.95-0.99 as strong, 0.75-0.95 as positive and 0.5-0.75
as weak. Based on this argumentation, intercept, standard error, dummy
variable for Asian countries, monthly data and dummy variable for OLS re-
gression have PIP high enough to provide signi�cant results. Firstly, BMA
provides a robustness check that the overall e�ect of temperature on homicide
rates is driven primarily by their standard errors, as discussed in Section 3.
Moreover, I argue that studies conducted using monthly data produce higher
estimates. This is in line with scholars such as Misak (2022) or Ranson (2014)
who mention di�erences between short-run and long-run temperature e�ect
estimates on crime. Moreover, OLS regression techniques leads to higher
estimates compared to other estimation methods such as Poisson regression.
This conclusion is also supported by previous evidence, most notably by
Horrocks & Menclova (2011) or Ranson (2014). Finally, studies from Asian
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countries report smaller estimates than studies from the rest of the world.
This is in line with the conclusion by Mares & Mo�ett (2016).

5 Concluding remarks

I present the �rst meta-analysis of temperature e�ects on crime rates. Based
on my results, the temperature e�ect on homicide rates, represented by 156
estimates reported in 20 studies, has no signi�cant causal e�ect. After cor-
recting for publication bias and controlling for 13 aspects of data, such as
data characteristics, structural variation, estimation methods, spatial and
publication characteristics, it appears that there is no signi�cant e�ect of
temperature on homicide rates or the e�ect is approximately 23 % smaller
than the literature suggests.

Moreover, according to my analyzes of heterogeneity among studies, sev-
eral additional conclusion can be made. Firstly, studies on monthly data
report substantially higher estimates than studies on daily or annual data.
Secondly, the OLS estimation technique seems to lead to lower estimated
e�ects of temperature on homicide rates than other methods. Studies from
Asian countries also report smaller e�ects.

After quantitatively examining existing studies, I conclude that higher
temperature does not cause an increase in homicide rates.
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Appendix

Figures

Figure 6: Mean estimate of temperature e�ect of homicide rate per study.
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Figure 7: Distribution of collected e�ects.
Note: Plot shows distribution of all estimates. Red line stands for zero.
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Table 6: Welch Two Sample t-test - e�ects

t-statistics df p-value mean in group a mean in group b
1.1214 205.13 0.2634 0.004829897 0.003306400

Note: Welch Two Sample t-test for winsorization. We cannot reject the null hy-
pothesis, so there is no need for winsorization of e�ects estimates.

Table 7: Welch Two Sample t-test - standard errors

t-statistics df p-value mean in group a mean in group b
1.3871 196.26 0.167 0.003364928 0.002090939

Note: Welch Two Sample t-test for winsorization. We cannot reject the null hy-
pothesis, so there is no need for winsorization of standard errors.
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